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Complete free surface stress conditions have been incorporated into a numerical 
technique for computing transient, incompressible fluid flows. An easy to apply scheme, 
based on a new surface pressure interpolation, permits the normal stress to be applied 
at the correct free surface location. Tangential stresses are applied through the assign- 
ment of appropriate velocities near the surface. To illustrate the influence of the complete 
stress conditions, a variety of examples are presented, including some with highly 
contorting and colliding surfaces. Several of the examples are compared with experi- 
mental and analytical results. The influence of these boundary conditions on numerical 
stability is discussed from a simple qualitative point of view. 

INTRODUCTION 

Improvement of the free surface boundary conditions used in numerical fluid 
flow calculations is a continuing need. The Marker-and-Cell (MAC) method [l] 
has been significantly improved in this area by several recent investigators. The 
basis of these improvements has been in satisfying the free surface stress conditions 
more accurately. Crude approximations to these conditions were used in the 
original marker-and-cell method. Later, better approximations to the normal 
stress conditions were incorporated by Hirt and Shannon [2]. At that time, however, 
all pressures were specified at the calculational cell centers; therefore, while the 
correct normal stress was calculated it was not always applied at the correct 
location of the surface. It was then pointed out by Chan et al. [3].that the pressure 
could be specified at the surface instead of the nearby cell center by use of variable 
space increments. They devised a better finite-difference approximation to the 
Poisson equation for pressure that is applicable to many free surface problems for 
inviscid fluids. 

Both of these previous improvements have now been utilized to apply the correct 
normal and tangential stress conditions to the exact fluid surface location. To 
accomplish this a pressure interpolation technique has been developed, which, 

* This work was performed under the auspices of the United States Atomic Energy Commission. 
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due to its logical simplicity, can be easily incorporated into existing MAC method 
computer codes. Another advantage of this scheme is that it retains one of the 
main advantages of the Eulerian computational methods, i.e., the ability to 
calculate highly contorted, colliding surfaces [4]. This scheme is herein described 
in detail. The tangential stress condition has not, to our knowledge, previously been 
incorporated in numerical techniques. In this paper we also discuss when these 
conditions should be included, and the influence they have on numerical stability. 
To illustrate the influence of the complete stress conditions a variety of examples 
are presented and compared with both experimental and analytical results. 

THE MARKER-AND-CLLL M~HOD 

The marker-and-cell method was designed to calculate the flow of a viscous, 
incompressible fluid having a free surface [l]. Complete details of this method and 
numerous calculational examples can be found in the cited references; however, a 
brief description of the technique is given here of those features needed to under- 
stand this paper. 

The MAC method employs an Eulerian mesh of calculational cells and finite 
difference expressions to approximate the equation of continuity and the Navier- 
Stokes equations. The primary dependent variables are the pressure and the 
velocity components of the fluid. The pressure is specified at the center of each 
Eulerian ccl1 and is determined through the solution of a Poisson equation for 
pressure. A staggered mesh is used in the velocity component placement, which 
specifies the normal velocities at the Eulerian cell boundaries (see Fig. 1). 

The distinguishing feature of the MAC method is its capability to calculate 
free surface flows. The fluid surface is delineated by marker particles that move 
through the stationary network of cells. Each Eulerian cell is flagged to denote 
whether it is an empty cell (E) containing no fluid, a surface cell (S), which contains 
fluid but is next to an empty cell, or a full cell (F), which contains fluid and is not 
next to an empty cell. An example of this labeling is shown in Fig. 1. The purpose 
of this paper is to give prescriptions for the assignment of velocities and pressures 
in surface (S) cells that insure the satisfaction of the complete free surface stress 
conditions. 

THE NORMAL STRESS CONDITION 

The normal and tangential stress conditions for a two-dimensional surface can 
be approximated by the expressions [2] 

c$ - 2I@u,/&z) =. 0, (1) 

v(2u,jhn + Sum/an) = 0, i2> 
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FIG. 1. Field-variable layout and cell flags. 

where n denotes the outward normal direction and m the tangential direction to 
the local free surface; r$ refers to the ratio of pressure to constant density, u, is the 
normal and u, the tangential velocity, and v the kinematic viscosity of the fluid. 
Expressions (1) and (2) are to be applied at the surface. 

Originally the normal stress condition in MAC was approximated by setting 
the pressure equal to zero in all surface cells. Later [2] the surface cell pressure was 
modified to include the normal viscous stress according to (1). This pressure was 
still specified at the cell center, however, regardless of the location of the surface 
within the cell. The correct application of the normal stress condition necessitates 
the determination of both the surface slope and location within the surface cell. 

The surface slope can be determined approximately through the use of the cell 
flagging scheme. For example, if the cell above the surface cell is the only adjacent 
empty cell, then the surface is considered to be horizontal; if both the cell to the 
left and the one above the surface cell are empty, then the surface is considered to 
be oriented 45” to the horizontal. A more exact slope could be determined, but we 
have found this simple approximation to be adequate. The appropriate normal 
stress, which depends on the slope, is then derived from Eq. (1). A complete 
discussion of this is given in Ref. [2]. 

In contrast to Ref. [2], however, this pressure is now applied at the actual fluid 
surface. To accomplish this, a pressure at the center of the surface cell is specified 
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as a linear interpolation (or extrapolation) between an adjacent full cell pressure 
and the desired pressure at the fluid surface. Before writing down the interpolation 
formula, however, we must first define what is meant by the surface position 
within a calculational cell. 

The surface is specified by a set of marker particles that move with the locai 
fluid velocity. The surface is defined by the line segments connecting these points in 
sequential order. 

A proper cell center pressure is calculated in terms of an interpolation factor? 
7 -7 Sy/d, where d is the distance from the actual surface to the center of a neigh- 
boring full cell along a line connecting the surface cell and full cell centers. To 
calculate d the sequentially numbered surface markers on either side of the line 
connecting cell centers is determined. The point of intersection of a line segment 
between these bracketing surface markers and the line connecting cell centers is 
determined. The distance between this point and the center of the adjacent ful! ceil 
is d, as shown in Fig. 2. Similar distances are calculated for all full cells adjacent to 

FIG. 2. A typical interpolation cell selection. 

the surface cell. When there is more than one neighboring full cell, the one having 
the smallest value of 1 Sy - d 1 or 1 6x - d / is chosen for the interpolation. This is 
the cell whose intersection point is nearest the center of the surface cell. The pressure 
in the surface cell is then calculated by a linear interpolation 

where +,, is the surface pressure from the normal stress condition, & may be 
any additional pressure applied directly to the surface, $, is the current value of 
pressure in the chosen neighboring full cell and 7 is the previously defined inter- 
polation number. 
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There are two situations in which the rl value used in (3) must be changed. If the 
calculated length d happens to exceed one and one-half cell widths (7 < 2/3), then 
7 is assigned the value 21’3. This happens, when the line connecting the full and 
surface cell centers does not intersect the surface within the surface cell; for example, 
as the surface shown in Fig. 2 is translated upward, the line coming from the full 
cell on the right intersects the surface more and more to the left, eventually inter- 
secting it outside the surface cell. 

When the intersection point lies within the full cell (T > 2) the pressure iteration 
will diverge unless a modification is introduced. The pressure in all full cells is 
allowed to relax during the iteration according to 

$3” = (1 - w,) 4,” -I- WO& (4) 

where w,, is a constant relaxation parameter, lz refers to the iteration level, and 

(5) 

The subscripts refer to the neighboring cells at the right, top, left and bottom; S is 
the usual velocity source term [I]. To maintain stability, the full interpolation 
cell pressure must be under-relaxed by an amount depending on the value of 7. A 
variable relaxation parameter can be derived for the full interpolation cells that 
acts as an under-relaxer when 77 > (5 - 4/o,,). This relaxation parameter 

(6) 

is used only with the full interpolation cell. The other full cells use the constant 
relaxation parameter w0 , which corresponds to 7 = 1.0 in (6). We have found 
1.7 or 1.8 to be generally the most effective value for o,, . 

The origin of the T-dependent relaxation factor arose from the observation that 
divergence was occurring when 7 exceeded 2, because a change in a full cell pres- 
sure could produce a larger change in a neighboring surface cell pressure as 
calculated by Eq. (3). This then caused the full cell pressure to change by a larger 
amount, and in the opposite direction, during the next iteration. Repetition of this 
process in successive iterations resulted in oscillating and diverging pressures. This 
kind of divergence is avoided, however, if the surface cell pressure used in Eq. (5) is 
evaluated at the new iteration level Iz + 1. In other words, ~$3~’ depends on a 
surface pressure that must be expressed as a function of C#$~~ itself. Instead of 
actually doing this, however, the same result can be obtained by using the suggested 
relaxation parameter together with Eqs. (3)-(5). 

Use of the new surface pressure interpolation technique produces a smooth 
surface and results that closely approximate experimental and analytical data, A 
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comparison of experimental [5] and calculational results, both with and without 
the interpolation technique, for the surge front of a collapsing fluid column is 
shown in Figs. 3 and 4. There is excellent agreement between the experimentally 
measured surge front position as a function of time and a calculation using the 
interpolation technique. A slower front velocity is calculated with the less accurate, 
original MAC technique. This is due primarily to the irregular velocities at the 
surface resulting from incorrect pressures in surface ceils. These velocities have 
created "humps" on what should otherwise be a relatively smooth surface and as a 
result the front moves too slowly. 

In Fig. 5 the cross section of a column of fluid undergoing a steady rotation 
about an axis at its left side is shown both with and without the new surface treat- 
ment. The plots show the calculation, which started with the correct equilibrium 
solution of a paraboloid of revolution, after 15 cycles. As can be seen in Fig. 5b, 
equilibrium could not be maintained with the surface treatment used in the original 

(a) 
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FI~. 3. Comparison of a collapsing fluid column calculated with the surface pressure inter- 
polation scheme (a) and with surface cell pressure equal to zero (b) at times 0., 2., and 4. 



FIG. 4. Comparison of experimental and computer-generated data for the surge front velocity 
of a collapsing fluid column. The experimental points have been shifted 0.28 units to the left, 
which is consistent with the uncertainty of the time at which motion began in the experiments. 
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FIG. 5. Cross sections of a kid column rotating about an axis at its left side with (a) and 
without (b) the surface pressure interpolation scheme. 
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MAC method. In Fig. 5a, the relative smoothness of the surface demonstrates the 
effectiveness of the new method. A slight irregularity, however, is seen in the upper 
portion of the surface, which results from interpolating the pressure from only 
one of the two neighboring full cells. The computed surface cell pressure is not 
precisely correct in relation to the other full cell; consequently, a slightly spurious 
velocity is induced at the surface. This is most likely to occur when the surface is 
much closer to one of the full cells than the other. 

The splashing drop, as shown in cross section in Fig. 6, points out the capability 
of the new surface interpolation technique to function when surfaces collide. The 
Reynolds number of this problem, referring to the radius and initial velocity oi 
the drop, is 75. It is evident from the initial plot that when the drop collides with 
the pool of fluid, surface particles are going to be “trapped” in the interior oi‘the 
fluid. These particles are deleted when they end up in full cells, since they serve no 
useful purpose in such cases. The definition of the surface is retained by adding 
particles in the gap left by the deletion. These are placed on a straight line connec- 
ting the surface particles on each side of the gap. Indeed, any time two successive 

FIG. 6. Cross sections of a splashing drop in a deep pool. 
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surface marker particles become too far apart, additional particles may be added 
to adequately maintain definition of the surface. In both the deletion and addition 
processes, the successive numbering of these particles is required. 

Another advantage of the surface pressure interpolation scheme in calculating 
this kind of problem is evident when compared with similar runs using the original 
MAC surface treatment. In these earlier calculations, the surface of the collapsing 
crater becomes irregular resulting in the appearance of holes in the fluid interior 
[6]. While not entirely detrimental to the calculation, this feature was undesirable 
and has now been eliminated with the new interpolation scheme. This scheme also 
prevents the breaking away of spurious particles from the fluid as the crater closes 
and fluid jets upward in the center, as happened in the original MAC calculations. 

THE TASGPWAL SI-RF% COSDITION 

Another problem requiring accurate free surface stress conditions is the forma- 
tion of a viscous bore. The improved accuracy that can be obtained through use 
of the normal stress condition has been demonstrated for this problem at low 
Reynolds number flows, even though the surface pressure was then specified at 
cell center [2]. This initial investigation revealed that without inclusion of the 
stress conditions the calculated speed of the bore front was greater than the pre- 
dicted theoretical value, and the height of the fluid behind the bore at the left 
wall was less, although an overshoot was observed at the front of the bore. The 
excessive speed of the bore was explained as resulting from the incorrect use of 
4 -z 0 in surface cells at the front of the bore. The pressure should have been 
positive there because of a viscous contribution. This caused the bore to move 
forward too rapidly and the fluid height behind the bore to be too low. Inclusion 
of the normal stress condition did improve the accuracy of the calculation [2]; the 
bore speed, however, was somewhat less than the theoretical value, and an over- 
shoot in fluid height at the bore front was still observed. These anomalies were 
then explained as possibly resulting from the use of an incomplete tangential stress 
condition. 

A more correct tangential stress condition is given by Eq. (2). To apply this 
condition it is again necessary to know the position and shape of the surface. In 
principle, these can be calculated from the location of the surface marker particles, 
but because of the other approximations in the MAC method it is suficicnt to 
crudely sense surface slope according to the arrangement of neighboring empty 
cells, as was done in the previous section. Thus, for a two-dimensional surface, if 
the surface is nearly horizontal or vertical, the tangential stress condition is 

(7) 
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if, however, the surface slope is at 45” to the horizontal, which is approximately 
the case when there are two adjacent empty cells contiguous to the surface cell, 
the condition is then 

Originally the tangential stress condition was approximated by choosing those 
velocities needed in cells outside the free surface equal to the corresponding 
velocities inside the surface, which approximate the condition Zu,,J&z :.= 0. This 
approximation is not correct at low Reynolds numbers and permits a flux of 
tangential momentum into the surface at the bore front. It was suggested that 
such a flux could account for slowing the bore down and contribute to the over- 
shoot in elevation. 

We have now included both the normal and tangential stress conditions. fn 
cells with two sides open to empty cells, the original MAC method specified that 
both &j2x and c’o/Z,v should be individually zero. This then satisfied the tangential 
stress condition for a 45” surface (8). The only addition needed is a prescription 
for condition (7). As an example, suppose there are two adjacent surface cells (i,,j) 
and (i T 1, ,i) that have above them two adjacent empty cells (i, ,i -... 1) and 
(i + I, j -i-- 1 j (see Fig. 7). The surface would then be horizontal and a prescription 
for the tangential velocity outside the surface uf& is needed. According to Eq. (7) 
this velocity is related to those within the fluid by 

where the velocities I?+~‘* 1 and E!$” are determined by requiring the incompres- 

FIG. 7. Tangential velocity selection at a horizontal surface. 
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sibility condition to be satisfied in surface cells, as was done in the original MAC 
method. A similar expression can be constructed for a vertical surface. 

Actually, this tangential stress condition, and the normal condition involving 
the viscous term should only be used for sufficiently low Reynolds number flows. 
We shall return to what constitutes a sufficiently low Reynolds number shortly. 

The low Reynolds number (R = 4.33), viscous bore calculation has been 
repeated with the full stress conditions. An exact comparison with the earlier 
work is not made because the code used for these calculations does not have a fluid 
input boundary condition at the right wall, which allowed a continuing input of 
fluid to sustain the bore formation in the earlier calculations. To partially over- 
come this, a mesh twice as long as the original was used. The remainder of the 
initial conditions were the same. The plots shown in Fig. 8 present only the left 
half of the calculational mesh. The comparison of results is made at a time to 
assure adequate fluid for the proper bore formation. As was postulated 121, the 
inclusion of the tangential stress conditions did improve the bore speed, which is 

I I 

FIG. 8. Viscous bore (R = 4.33) calculated with full stress conditions. Configurations shown 
are at times O., 3., 4.6, and 6. 
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now nearly equal to the theoretical value of 0.577. It is calculated to be 0.575 to a 
time of approximately 6. At later times the incoming fluid height is slightly less than 
it should be and the bore speed drops OK 

With the full stress conditions, the bore height at the left wall is still not equai 
to the theoretical value of 1.50. The fluid depth at the left wall was only raised 
from I .40 to 1.41 by including the tangential stress conditions; however, with the 
addition of the surface pressure interpolation technique, the depth was raised to 
I .4?. This level is approached asymptotically. The avarage height of the bore front 
and the fluid at the left wall is approximately 1.50, which is consistent with the 
conservation of mass, as it must be. It had been assumed that with the correct 
pressure defined in surface cells the overshoot in height at the bore front would 
disappear. This did not occur which suggests that such an overshoot is physicaily 
correct. However, it may be that a still more refined treatment of the tangential 
stress condition would eventually eliminate this overshoot. 

Now that a complete set of free surface stress conditions have been incorporated 
into the MAC method, it must be pointed out that they cannot be used indis- 
criminately for all calculations. Some hint of this can be gleaned from the observa- 
tion that the tangential stress condition (2) is unnecessary for inviscid problems 
(v =- 0), but the numerical approximation (9) is independent of v. This situation 
can be better understood by first considering a related problem. 

At a rigid wall the tangential stress condition requires that the fluid not slip 
along the wall. In an actual fluid this implies the development of a boundary layer, 
in which the fluid is accelerated from the wall velocity to a free stream value some 
distance from the wall. The thickness of the boundary layer may be large or small 
with respect to an Eulerian cell dimension, depending on the problem under 
consideration. An estimate of when a thick or thin boundary layer should be 
observed can be obtained from the following argument. Let 0’ and L be a typical 
velocity and dimension in the problem of interest. According to simple boundary 
layer theory, the boundary layer thickness, developed along a wall of length L, is 
proportional to l/vL,/U. If it is assumed that a typical linear dimension L is resolved 
by h7 finite difference intervals, i.e., L = q M6x, then the boundary layer will be small 
with respect to a cell dimension, provided R > N2. where R .-: UL/v is the Aow 
Reynolds number. Thus, the boundary layer is R 

> IV?. In this case choosing the value of tl,,t to be 
equal to uin (leading to vertical dashed line in Fig. 9), rather than the negative of 
Uin (leading to diagonal dashed line in Fig. 9), offers a better approximation to the 
velocity profile near the wall. The no-slip condition in this case (uout == -uicj 
forces an artificially large drag on the fluid, while the free-slip condition (uout = : tii,) 
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FIG. 9. Velocity profile for a thin boundary layer. 

represents no boundary drag, clearly a much better approximation. Actually one 
might argue that the no-slip condition could be used all the time, since a thin 
boundary layer occurs only when viscous effects are small, in which case it should 
not matter what is done with tl,,t . Unfortunately, it is often necessary for com- 
putational stability to use a viscosity that is larger than that for a real fluid. In 
such cases it is necessary to use the free slip prescription to prevent an unrealistically 
large transfer of tangential momentum from the wall. 

If the boundary layer is thick with respect to a cell width R < N”, then a signifi- 
cant tangential momentum transfer should occur at the wall and the no-slip 
condition is the correct boundary condition. 

At a free surface the situation is much the same. When the fluid is treated as 
nearly inviscid it is incorrect to use the complete free surface stress conditions. 
Instead, the inviscid condition 4 = 0 should be applied at the surface, and all 
velocities needed outside a surface should be obtained by extrapolating interior 
values outward. 

NUMERICAL STABILITY CONSIDERATIONS 

There are unique numerical instabilities associated with each of the iteration 
sequences in MAC calculations, i.e., with the pressure iteration at a given time 
step and with the successive steps of time advancement. Both kinds of iteration 
stability criteria are affected by use of the surface pressure interpolation technique 
and by the stress conditions. 
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As previously pointed out, a variable relaxation parameter is necessary to 
prevent instability within the pressure iteration scheme. Otherwise, a flip-flop 
growth of pressures will occur due to an excessive feedback between surface and 
full cells. 

Another potential source of numerical instability is the viscous diffusion terms 
in the finite-difference momentum equations. In the original MAC method the 
condition necessary to insure stability through successive time steps was 

1 vst <.- ( 
&x2 6y2 ___- 

2 1 6x2 + sy2 . 

This condition, the derivation of which is discussed in Ref. I, must be modified to 
include a dependence on the interpolation number T when the normal and tangen- 
tial stress conditions are employed. 

The dependence of this numerical stability criterion on the inclusion of the 
normal stress condition can be demonstrated in the following way. Consider the 
velocity profile in the neighborhood of a pair of surface cells as shown in Fig. 10. 
The velocities at the top of each surface cell have been chosen such that there is a 
zero net mass flux into each cell. in accord with the usual MAC prescription. As a 
result, all velocities in the figure have equal magnitudes. The tangential stress 
condition requires the Uo,,t L= -Uin . The change in Ujn during the next time step 
is easy to compute, and is found to change sign. The requirement that the new 

FIG. 10. Velocity profile for the numerical stability criterion model. 
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magnitude of Uin be no larger than it was before the change leads to the require- 
ment (with 6x = 8~) 

vst 1 
6x’<---. 47 + 4 (11) 

If this condition is violated the u-velocity will oscillate in sign and grow in 
magnitude on successive time cycles, leading to a familiar kind of numerical 
instability. This simple model of instability at a free surface is likely to be the 
worst case, because it involves the shortest wave length disturbance resolvable in 
the mesh and this is generally the most likely to be affected by viscous effects. 
Clearly, the value of 7 can not be too large if stability is to be maintained. In 
practice the limitation 7 5 2 has had little adverse effect on the calculational 
results to which it has been applied. 

If the Reynolds number of the flow is large enough, the stress conditions should 
be applied as for an inviscid fluid, in which case the stability condition (11) can be 
relaxed to 

vst 1 
TX” < j . WI 

Actually, the velocity distribution shown in Fig. 10 is unstable away from the 
surface unless v&/ax2 < Q. Therefore, the dominant influence of the new stress 
conditions arrives from the magnification of the normal stress condition by the 
interpolation factor 7, and this only in the neighborhood of the surface. 
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